Skip to content
Toggle navigation
P
Projects
G
Groups
S
Snippets
Help
SINAI
/
clef-pan2018
This project
Loading...
Sign in
Toggle navigation
Go to a project
Project
Repository
Pipelines
Settings
Activity
Graph
Charts
Create a new issue
Commits
Issue Boards
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Commit
784b8796
authored
Jul 12, 2018
by
Arturo Montejo Ráez
Browse files
Options
_('Browse Files')
Download
Email Patches
Plain Diff
official version
parent
9622b455
Hide whitespace changes
Inline
Side-by-side
Showing
6 changed files
with
257 additions
and
18 deletions
ComplexityLanguage.py
ComplexityPolish.py
ComplexitySpanish.py
classify_comp.py
classify_comp_ext.py
classify_postf.py
ComplexityLanguage.py
View file @
784b8796
...
@@ -116,7 +116,7 @@ class ComplexityLanguage():
...
@@ -116,7 +116,7 @@ class ComplexityLanguage():
lsentences
=
[]
lsentences
=
[]
for
words
in
self
.
sentences
:
for
words
in
self
.
sentences
:
lwords
=
[]
lwords
=
[]
for
w
in
words
:
for
w
in
words
:
if
re
.
match
(
'F.*'
,
w
.
get_tag
()):
if
re
.
match
(
'F.*'
,
w
.
get_tag
()):
punctuation
.
append
(
w
.
get_form
())
punctuation
.
append
(
w
.
get_form
())
...
@@ -127,7 +127,7 @@ class ComplexityLanguage():
...
@@ -127,7 +127,7 @@ class ComplexityLanguage():
self
.
N_words
=
sum
(
lsentences
)
self
.
N_words
=
sum
(
lsentences
)
#print('Number of words (N_w): ', self.N_words, '\n' )
#print('Number of words (N_w): ', self.N_words, '\n' )
self
.
mean_words
=
np
.
mean
(
lsentences
)
self
.
mean_words
=
np
.
mean
(
lsentences
)
self
.
std_words
=
np
.
std
(
lsentences
)
self
.
std_words
=
np
.
std
(
lsentences
)
self
.
N_punctuation
=
len
(
punctuation
)
self
.
N_punctuation
=
len
(
punctuation
)
self
.
punctuation
=
punctuation
self
.
punctuation
=
punctuation
...
...
ComplexityPolish.py
View file @
784b8796
...
@@ -2,6 +2,7 @@ import sys
...
@@ -2,6 +2,7 @@ import sys
sys
.
path
.
append
(
'/home/garciacumbreras18/dist/treetagger'
)
sys
.
path
.
append
(
'/home/garciacumbreras18/dist/treetagger'
)
import
nltk
import
nltk
import
numpy
as
np
import
re
import
re
from
treetagger
import
TreeTagger
from
treetagger
import
TreeTagger
...
@@ -208,7 +209,12 @@ class ComplexityPolish():
...
@@ -208,7 +209,12 @@ class ComplexityPolish():
pos_sentences
=
[]
pos_sentences
=
[]
sent
=
[]
sent
=
[]
for
w
in
sentences
:
for
w
in
sentences
:
tag
=
w
[
1
]
.
split
(
':'
)[
0
]
if
len
(
w
)
<
3
:
continue
if
w
[
1
]
.
find
(
':'
)
==
-
1
:
tag
=
w
[
1
]
else
:
tag
=
w
[
1
]
.
split
(
':'
)[
0
]
if
tag
==
'SENT'
:
if
tag
==
'SENT'
:
pos_sentences
.
append
(
sent
)
pos_sentences
.
append
(
sent
)
sent
=
[]
sent
=
[]
...
@@ -218,7 +224,7 @@ class ComplexityPolish():
...
@@ -218,7 +224,7 @@ class ComplexityPolish():
return
self
.
pos_sentences
return
self
.
pos_sentences
def
calcMetricsExtend
(
self
,
text
):
def
calcMetricsExtend
(
self
,
text
):
"""
"""
Calcula la métricas de complejidad activadas en la configuración
Calcula la métricas de complejidad activadas en la configuración
"""
"""
...
...
ComplexitySpanish.py
View file @
784b8796
...
@@ -307,7 +307,7 @@ class ComplexitySpanish(ComplexityLanguage):
...
@@ -307,7 +307,7 @@ class ComplexitySpanish(ComplexityLanguage):
return
metrics
return
metrics
def
calcMetricsExtend
(
self
,
text
):
def
calcMetricsExtend
(
self
,
text
):
"""
"""
Calcula la métricas de complejidad activadas en la configuración
Calcula la métricas de complejidad activadas en la configuración
"""
"""
...
...
classify_comp.py
View file @
784b8796
...
@@ -111,7 +111,9 @@ for problem in collectionInfo:
...
@@ -111,7 +111,9 @@ for problem in collectionInfo:
print
(
'Reading text file: '
,
nameFile
,
flush
=
True
)
print
(
'Reading text file: '
,
nameFile
,
flush
=
True
)
with
open
(
os
.
path
.
join
(
os
.
path
.
join
(
INPUT_DIR
,
problem
[
'problem-name'
],
candidate
[
'author-name'
]),
nameFile
),
'r'
)
as
context
:
with
open
(
os
.
path
.
join
(
os
.
path
.
join
(
INPUT_DIR
,
problem
[
'problem-name'
],
candidate
[
'author-name'
]),
nameFile
),
'r'
)
as
context
:
calcmetrics
=
complexityText
.
calcMetrics
(
context
.
read
())
content
=
context
.
read
()
context
.
close
()
calcmetrics
=
complexityText
.
calcMetrics
(
content
)
dfi
=
pd
.
DataFrame
(
calcmetrics
,
index
=
[
i
])
dfi
=
pd
.
DataFrame
(
calcmetrics
,
index
=
[
i
])
dfi
[
'problem'
]
=
problem
[
'problem-name'
]
dfi
[
'problem'
]
=
problem
[
'problem-name'
]
...
@@ -142,9 +144,10 @@ for problem in collectionInfo:
...
@@ -142,9 +144,10 @@ for problem in collectionInfo:
for
i
,
unknown_file
in
enumerate
(
os
.
listdir
(
os
.
path
.
join
(
INPUT_DIR
,
problem
[
'problem-name'
],
problem_info
[
'unknown-folder'
]))):
for
i
,
unknown_file
in
enumerate
(
os
.
listdir
(
os
.
path
.
join
(
INPUT_DIR
,
problem
[
'problem-name'
],
problem_info
[
'unknown-folder'
]))):
print
(
"Analyzing file"
,
unknown_file
,
flush
=
True
)
print
(
"Analyzing file"
,
unknown_file
,
flush
=
True
)
with
open
(
INPUT_DIR
+
'/'
+
problem
[
'problem-name'
]
+
'/'
+
problem_info
[
'unknown-folder'
]
+
'/'
+
unknown_file
,
'r'
)
as
unknown_fhd
:
with
open
(
INPUT_DIR
+
'/'
+
problem
[
'problem-name'
]
+
'/'
+
problem_info
[
'unknown-folder'
]
+
'/'
+
unknown_file
,
'r'
)
as
unknown_fhd
:
c
alcmetrics
=
complexityText
.
calcMetrics
(
unknown_fhd
.
read
()
)
c
ontent
=
unknown_fhd
.
read
(
)
unknown_fhd
.
close
()
unknown_fhd
.
close
()
calcmetrics
=
complexityText
.
calcMetrics
(
content
)
dfi
=
pd
.
DataFrame
(
calcmetrics
,
index
=
[
i
])
dfi
=
pd
.
DataFrame
(
calcmetrics
,
index
=
[
i
])
dfi
[
'problem'
]
=
problem
[
'problem-name'
]
dfi
[
'problem'
]
=
problem
[
'problem-name'
]
dfi
[
'language'
]
=
problem
[
'language'
]
dfi
[
'language'
]
=
problem
[
'language'
]
...
@@ -181,17 +184,23 @@ for problem in set(complexity_known['problem']):
...
@@ -181,17 +184,23 @@ for problem in set(complexity_known['problem']):
train
=
complexity_known
.
loc
[
complexity_known
[
'problem'
]
==
problem
]
train
=
complexity_known
.
loc
[
complexity_known
[
'problem'
]
==
problem
]
train
=
train
.
dropna
(
axis
=
1
,
how
=
'any'
)
train
=
train
.
dropna
(
axis
=
1
,
how
=
'any'
)
train_target
=
train
[
'label'
]
train_target
=
train
[
'label'
]
train_data
=
train
.
drop
([
'problem'
,
'language'
,
'candidate'
,
'filename'
,
'label'
],
axis
=
1
)
train_data
=
train
.
drop
([
'problem'
,
'language'
,
'candidate'
,
'filename'
,
'label'
],
axis
=
1
)
train_data
=
pd
.
DataFrame
(
preprocessing
.
normalize
(
train_data
,
norm
=
'l2'
,
axis
=
args
.
axis
))
#
#
# Para el test cogemos los textos desconocidos
# Para el test cogemos los textos desconocidos
#
#
test
=
complexity_unknown
.
loc
[
complexity_unknown
[
'problem'
]
==
problem
]
test
=
complexity_unknown
.
loc
[
complexity_unknown
[
'problem'
]
==
problem
]
test
=
test
.
dropna
(
axis
=
1
,
how
=
'any'
)
test
=
test
.
dropna
(
axis
=
1
,
how
=
'any'
)
test_target
=
test
[
'label'
]
test_data
=
test
.
drop
([
'problem'
,
'language'
,
'filename'
],
axis
=
1
)
test_data
=
test
.
drop
([
'problem'
,
'language'
,
'candidate'
,
'filename'
,
'label'
],
axis
=
1
)
test_data
=
pd
.
DataFrame
(
preprocessing
.
normalize
(
test_data
,
norm
=
'l2'
,
axis
=
args
.
axis
))
#
# Normalizamos
#
data
=
pd
.
concat
([
train_data
,
test_data
])
data
=
pd
.
DataFrame
(
preprocessing
.
normalize
(
data
,
norm
=
'l2'
,
axis
=
args
.
axis
))
train_data
=
data
.
iloc
[:
train_data
.
shape
[
0
],:]
test_data
=
data
.
iloc
[
train_data
.
shape
[
0
]:,:]
# Entrenamos con los textos con candidatos conocidos y predecimos con los datos desconocidos
# Entrenamos con los textos con candidatos conocidos y predecimos con los datos desconocidos
y_pred
=
clf
.
fit
(
train_data
,
train_target
)
.
predict
(
test_data
)
y_pred
=
clf
.
fit
(
train_data
,
train_target
)
.
predict
(
test_data
)
...
...
classify_comp_ext.py
0 → 100755
View file @
784b8796
#!/home/garciacumbreras18/anaconda3/bin/python3
#/usr/bin/env python
# -*- coding: utf-8 -*-
###############################################################################
# Authors:
# Rocío López-Anguita (rlanguit@ujaen.es)
# Arturo Montejo-Ráez (amontejo@ujaen.es)
# Centro de Estudios Avanzados en TIC (CEATIC)
#
# Universidad de Jaén - 2018
###############################################################################
import
json
import
os
from
ComplexityLanguage
import
ComplexityLanguage
from
ComplexitySpanish
import
ComplexitySpanish
from
ComplexityEnglish
import
ComplexityEnglish
from
ComplexityFrench
import
ComplexityFrench
from
ComplexityPolish
import
ComplexityPolish
from
ComplexityItalian
import
ComplexityItalian
import
pandas
as
pd
import
numpy
as
np
import
matplotlib.pyplot
as
plt
from
mpl_toolkits.mplot3d
import
Axes3D
from
sklearn.decomposition
import
PCA
from
sklearn
import
preprocessing
import
argparse
## ----------------------------------------------------------------------------
##
## Read command lines arguments
##
parser
=
argparse
.
ArgumentParser
(
description
=
'PAN2018 author identificator based on text complexity metrics'
)
parser
.
add_argument
(
'-i'
,
type
=
str
,
help
=
'input directory'
)
parser
.
add_argument
(
'-o'
,
type
=
str
,
help
=
'output directory'
)
parser
.
add_argument
(
'-x'
,
'--axis'
,
type
=
int
,
choices
=
[
0
,
1
],
default
=
1
,
help
=
'apply L2 normalization by sample (1, default) or by feature (0)'
)
args
=
parser
.
parse_args
()
INPUT_DIR
,
OUTPUT_DIR
=
args
.
i
,
args
.
o
## ----------------------------------------------------------------------------
##
## Load of analyzers
##
print
(
'Loading complexity analyzers for different languages...
\n
'
,
flush
=
True
)
mlComplexityText
=
{
'en'
:
ComplexityEnglish
(),
'sp'
:
ComplexitySpanish
(),
'fr'
:
ComplexityFrench
(),
'pl'
:
ComplexityPolish
(),
'it'
:
ComplexityItalian
()
}
## ----------------------------------------------------------------------------
##
## Corpus loading (both, train and test data sets)
##
complexity_known
=
pd
.
DataFrame
()
complexity_unknown
=
pd
.
DataFrame
()
labels
=
{}
labels_cand
=
[]
#
# Recorremos todos los problemas
#
print
(
'Loading collection-info.json file from'
,
args
.
i
,
flush
=
True
)
with
open
(
INPUT_DIR
+
'/collection-info.json'
,
'r'
)
as
f
:
collectionInfo
=
json
.
load
(
f
)
f
.
close
()
for
problem
in
collectionInfo
:
print
(
'
\n\n
Problem: '
,
problem
[
'problem-name'
],
flush
=
True
)
print
(
'Language: '
,
problem
[
'language'
],
flush
=
True
)
#
# Cargamos la clase para el cálculo de la complejidad del idioma correspondiente
#
complexityText
=
mlComplexityText
[
problem
[
'language'
]]
#
# Recorremos todos los candidatos
#
print
(
"Loading problem data...
\n
"
,
flush
=
True
)
with
open
(
INPUT_DIR
+
'/'
+
problem
[
'problem-name'
]
+
'/problem-info.json'
,
'r'
)
as
problem_info_fhd
:
problem_info
=
json
.
load
(
problem_info_fhd
)
problem_info_fhd
.
close
()
#
# Leemos los textos de autoría conocida (TEXTOS DE ENTRENAMIENTO)
#
print
(
"Loading training data"
)
for
candidate
in
problem_info
[
'candidate-authors'
]:
print
(
'Candidate: '
,
candidate
[
'author-name'
],
flush
=
True
)
files
=
os
.
listdir
(
os
.
path
.
join
(
INPUT_DIR
,
problem
[
'problem-name'
],
candidate
[
'author-name'
]))
probcand
=
problem
[
'problem-name'
]
+
candidate
[
'author-name'
]
if
not
probcand
in
labels
:
labels
[
probcand
]
=
len
(
labels
)
labels_cand
+=
[
probcand
]
#
# Procesamos todo los textos de ese candidato
#
for
i
,
nameFile
in
enumerate
(
files
):
print
(
'Reading text file: '
,
nameFile
,
flush
=
True
)
with
open
(
os
.
path
.
join
(
os
.
path
.
join
(
INPUT_DIR
,
problem
[
'problem-name'
],
candidate
[
'author-name'
]),
nameFile
),
'r'
)
as
context
:
content
=
context
.
read
()
context
.
close
()
calcmetrics
=
complexityText
.
calcMetrics
(
content
)
calcmetrics_ext
=
complexityText
.
calcMetricsExtend
(
content
)
dfi
=
pd
.
DataFrame
({
**
calcmetrics
,
**
calcmetrics_ext
},
index
=
[
i
])
dfi
[
'problem'
]
=
problem
[
'problem-name'
]
dfi
[
'language'
]
=
problem
[
'language'
]
dfi
[
'candidate'
]
=
candidate
[
'author-name'
]
dfi
[
'label'
]
=
labels
[
probcand
]
dfi
[
'filename'
]
=
nameFile
complexity_known
=
complexity_known
.
append
([
dfi
])
#
# Si existe ground-truth, lo leemos para conocer los candidatos
#
unknown_candidates
=
False
if
os
.
path
.
isfile
(
INPUT_DIR
+
'/'
+
problem
[
'problem-name'
]
+
'/ground-truth.json'
):
print
(
"Reading ground truth..."
,
flush
=
True
)
with
open
(
INPUT_DIR
+
'/'
+
problem
[
'problem-name'
]
+
'/ground-truth.json'
,
'r'
)
as
ground_truth_fhd
:
ground_truth
=
json
.
load
(
ground_truth_fhd
)
ground_truth_fhd
.
close
()
unknown_candidates
=
{}
for
item
in
ground_truth
[
'ground_truth'
]:
unknown_candidates
[
item
[
'unknown-text'
]]
=
item
[
'true-author'
]
#
# Recorremos archivos sin etiquetar (TEXTOS DE TEST)
#
print
(
"Loading test data"
,
flush
=
True
)
for
i
,
unknown_file
in
enumerate
(
os
.
listdir
(
os
.
path
.
join
(
INPUT_DIR
,
problem
[
'problem-name'
],
problem_info
[
'unknown-folder'
]))):
print
(
"Analyzing file"
,
unknown_file
,
flush
=
True
)
with
open
(
INPUT_DIR
+
'/'
+
problem
[
'problem-name'
]
+
'/'
+
problem_info
[
'unknown-folder'
]
+
'/'
+
unknown_file
,
'r'
)
as
unknown_fhd
:
content
=
unknown_fhd
.
read
()
unknown_fhd
.
close
()
calcmetrics
=
complexityText
.
calcMetrics
(
content
)
calcmetrics_ext
=
complexityText
.
calcMetricsExtend
(
content
)
dfi
=
pd
.
DataFrame
({
**
calcmetrics
,
**
calcmetrics_ext
},
index
=
[
i
])
dfi
[
'problem'
]
=
problem
[
'problem-name'
]
dfi
[
'language'
]
=
problem
[
'language'
]
if
unknown_candidates
and
unknown_candidates
[
unknown_file
]:
probcand
=
problem
[
'problem-name'
]
+
unknown_candidates
[
unknown_file
]
dfi
[
'candidate'
]
=
unknown_candidates
[
unknown_file
]
dfi
[
'label'
]
=
labels
[
probcand
]
else
:
dfi
[
'candidate'
]
=
None
dfi
[
'label'
]
=
None
dfi
[
'filename'
]
=
unknown_file
complexity_unknown
=
complexity_unknown
.
append
([
dfi
])
## ----------------------------------------------------------------------------
##
## Training and classification
##
if
not
os
.
path
.
exists
(
OUTPUT_DIR
):
os
.
makedirs
(
OUTPUT_DIR
)
from
sklearn
import
svm
clf
=
svm
.
LinearSVC
(
C
=
1
)
for
problem
in
set
(
complexity_known
[
'problem'
]):
answers
=
[]
print
(
'------- Training and classifying '
,
problem
,
flush
=
True
)
#
# Para el train cogemos los textos conocidos
#
train
=
complexity_known
.
loc
[
complexity_known
[
'problem'
]
==
problem
]
train
=
train
.
dropna
(
axis
=
1
,
how
=
'any'
)
train_target
=
train
[
'label'
]
train_data
=
train
.
drop
([
'problem'
,
'language'
,
'candidate'
,
'filename'
,
'label'
],
axis
=
1
)
#
# Para el test cogemos los textos desconocidos
#
test
=
complexity_unknown
.
loc
[
complexity_unknown
[
'problem'
]
==
problem
]
test
=
test
.
dropna
(
axis
=
1
,
how
=
'any'
)
test_target
=
test
[
'label'
]
test_data
=
test
.
drop
([
'problem'
,
'language'
,
'candidate'
,
'filename'
,
'label'
],
axis
=
1
)
#
# Normalizamos
#
data
=
pd
.
concat
([
train_data
,
test_data
])
data
=
pd
.
DataFrame
(
preprocessing
.
normalize
(
data
,
norm
=
'l2'
,
axis
=
args
.
axis
))
train_data
=
data
.
iloc
[:
train_data
.
shape
[
0
],:]
test_data
=
data
.
iloc
[
train_data
.
shape
[
0
]:,:]
# Entrenamos con los textos con candidatos conocidos y predecimos con los datos desconocidos
y_pred
=
clf
.
fit
(
train_data
,
train_target
)
.
predict
(
test_data
)
for
index
,
row
in
test
.
iterrows
():
probcand
=
labels_cand
[
y_pred
[
index
]]
answers
.
append
({
'unknown-text'
:
row
[
'filename'
],
'predicted-author'
:
probcand
[
probcand
.
find
(
"candidate"
):],
})
with
open
(
OUTPUT_DIR
+
'/answers-'
+
problem
+
'.json'
,
'w'
)
as
file
:
json
.
dump
(
answers
,
file
,
indent
=
4
)
classify_postf.py
View file @
784b8796
...
@@ -178,8 +178,7 @@ for problem in set(postf['problem']):
...
@@ -178,8 +178,7 @@ for problem in set(postf['problem']):
# Calculamos el modelo de espacio vectorial
# Calculamos el modelo de espacio vectorial
#
#
tfidfVectorizer
=
TfidfVectorizer
(
ngram_range
=
(
1
,
args
.
ngramsize
),
use_idf
=
args
.
idf
)
tfidfVectorizer
=
TfidfVectorizer
(
ngram_range
=
(
1
,
args
.
ngramsize
),
use_idf
=
args
.
idf
)
postf
[
'POStfidf'
]
=
list
(
tfidfVectorizer
.
fit_transform
(
postf
[
'Pos'
]))
postf
[
'POStfidf'
]
=
list
(
tfidfVectorizer
.
fit_transform
(
postf
[
'Pos'
]))
#
#
...
@@ -190,7 +189,6 @@ for problem in set(postf['problem']):
...
@@ -190,7 +189,6 @@ for problem in set(postf['problem']):
train
=
train
.
dropna
(
axis
=
1
,
how
=
'any'
)
train
=
train
.
dropna
(
axis
=
1
,
how
=
'any'
)
train_target
=
train
[
'label'
]
train_target
=
train
[
'label'
]
train_data
=
np
.
array
(
list
(
train
[
'POStfidf'
]
.
apply
(
lambda
x
:
x
.
toarray
()[
0
])))
train_data
=
np
.
array
(
list
(
train
[
'POStfidf'
]
.
apply
(
lambda
x
:
x
.
toarray
()[
0
])))
train_data
=
pd
.
DataFrame
(
preprocessing
.
normalize
(
train_data
,
norm
=
'l2'
,
axis
=
args
.
axis
))
#
#
# Para el test cogemos los textos desconocidos
# Para el test cogemos los textos desconocidos
...
@@ -198,9 +196,15 @@ for problem in set(postf['problem']):
...
@@ -198,9 +196,15 @@ for problem in set(postf['problem']):
test
=
postf
[
postf
[
'filename'
]
.
str
.
contains
(
r"\bunknown"
,
regex
=
True
)]
test
=
postf
[
postf
[
'filename'
]
.
str
.
contains
(
r"\bunknown"
,
regex
=
True
)]
test
=
test
.
loc
[
test
[
'problem'
]
==
problem
]
test
=
test
.
loc
[
test
[
'problem'
]
==
problem
]
test
=
test
.
dropna
(
axis
=
1
,
how
=
'any'
)
test
=
test
.
dropna
(
axis
=
1
,
how
=
'any'
)
test_target
=
test
[
'label'
]
test_data
=
np
.
array
(
list
(
test
[
'POStfidf'
]
.
apply
(
lambda
x
:
x
.
toarray
()[
0
])))
test_data
=
np
.
array
(
list
(
test
[
'POStfidf'
]
.
apply
(
lambda
x
:
x
.
toarray
()[
0
])))
train_data
=
pd
.
DataFrame
(
preprocessing
.
normalize
(
train_data
,
norm
=
'l2'
,
axis
=
args
.
axis
))
#
# Normalizamos
#
data
=
pd
.
concat
([
pd
.
DataFrame
(
train_data
),
pd
.
DataFrame
(
test_data
)])
data
=
pd
.
DataFrame
(
preprocessing
.
normalize
(
data
,
norm
=
'l2'
,
axis
=
args
.
axis
))
train_data
=
data
.
iloc
[:
train_data
.
shape
[
0
],:]
test_data
=
data
.
iloc
[
train_data
.
shape
[
0
]:,:]
# Entrenamos con los textos con candidatos conocidos y predecimos con los datos desconocidos
# Entrenamos con los textos con candidatos conocidos y predecimos con los datos desconocidos
y_pred
=
clf
.
fit
(
train_data
,
train_target
)
.
predict
(
test_data
)
y_pred
=
clf
.
fit
(
train_data
,
train_target
)
.
predict
(
test_data
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment