Resultados evaluación

parent 2a2ba792
Showing with 26 additions and 0 deletions
Params:
vocab_embeddings = 100000
max_lenght_tweet = 40
Layers:
e = Embedding(feature_size, EMBEDDING_DIM, input_length=max_len_input, weights=[embedding_matrix], trainable=False)
model.add(e)
#number of features:_32 each vector of 200 dim is converted to a vector of 32 dim
model.add(LSTM(128, dropout=0.2, recurrent_dropout=0.2))
#model.add(Bidirectional(LSTM(2,dropout=0.2,recurrent_dropout=0.2,return_sequences=True)))
model.add(Dense(32, activation='tanh'))
model.add(Dropout(0.5))
model.add(Dense(len(CLASSES), activation='softmax'))
Results evaluation:
Accuracy trainning: 53.418567
*** Results RNN_LSTM ***
Macro-Precision: 0.5226264521865173
Macro-Recall: 0.5156404166549265
Macro-F1: 0.5100454275009482
Accuracy: 0.5155875299760192
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or sign in to comment