Commit 7eff927d by geni

The end.

parent 6c181c12
......@@ -160,12 +160,12 @@ def classification_embedings_rnn(tweets_train, tweets_train_labels_numeric, twee
#model.add(LSTM(128, return_sequences=True))
model.add(Bidirectional(LSTM(128, return_sequences=True)))
#model.add(Dense(128, activation='relu', kernel_initializer=glorot_uniform(seed=RANDOM_SEED), activity_regularizer=regularizers.l2(0.0001)))
model.add(Dense(128, activation='relu', kernel_initializer=glorot_uniform(seed=RANDOM_SEED), kernel_regularizer=regularizers.l2(0.01)))
model.add(Dense(128, activation='relu', kernel_initializer=glorot_uniform(seed=RANDOM_SEED)))
model.add(Dropout(0.5))
model.add(MaxPooling1D(pool_size=2, strides=1, padding="same"))
model.add(Flatten())
#model.add(Dense(64, activation='relu', kernel_initializer=glorot_uniform(seed=RANDOM_SEED), activity_regularizer=regularizers.l2(0.001)))
model.add(Dense(64, activation='relu', kernel_initializer=glorot_uniform(seed=RANDOM_SEED), kernel_regularizer=regularizers.l2(0.01)))
model.add(Dense(64, activation='relu', kernel_initializer=glorot_uniform(seed=RANDOM_SEED)))
model.add(Dropout(0.5))
#model.add(Dropout(0.25))
#model.add(Dense(16, activation='relu', kernel_initializer=glorot_uniform(seed=RANDOM_SEED), activity_regularizer=regularizers.l2(0.001)))
......
......@@ -236,18 +236,18 @@ def classification_embedings_rnn(tweets_train, tweets_train_labels_numeric, twee
#model.add(LSTM(128, return_sequences=True))
model.add(Bidirectional(LSTM(128, return_sequences=True)))
#model.add(Dense(128, activation='relu', kernel_initializer=glorot_uniform(seed=RANDOM_SEED), activity_regularizer=regularizers.l2(0.0001)))
model.add(Dense(128, activation='relu', kernel_initializer=glorot_uniform(seed=RANDOM_SEED), kernel_regularizer=regularizers.l2(0.01)))
model.add(Dense(128, activation='relu', kernel_initializer=glorot_uniform(seed=RANDOM_SEED)))
model.add(Dropout(0.5))
model.add(MaxPooling1D(pool_size=2, strides=1, padding="same"))
model.add(Flatten())
#model.add(Dense(64, activation='relu', kernel_initializer=glorot_uniform(seed=RANDOM_SEED), activity_regularizer=regularizers.l2(0.001)))
model.add(Dense(64, activation='relu', kernel_initializer=glorot_uniform(seed=RANDOM_SEED), kernel_regularizer=regularizers.l2(0.01)))
model.add(Dense(64, activation='relu', kernel_initializer=glorot_uniform(seed=RANDOM_SEED)))
model.add(Dropout(0.5))
#model.add(Dropout(0.25))
#model.add(Dense(16, activation='relu', kernel_initializer=glorot_uniform(seed=RANDOM_SEED), activity_regularizer=regularizers.l2(0.001)))
#model.add(Dropout(0.5))
model.add(Dense(len(CLASSES), activation='softmax'))
model.add(ActivityRegularization(l1=0.0,l2=0.0001))
model.add(ActivityRegularization(l1=0.0,l2=0.001))
# summarize the model
print(model.summary())
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or sign in to comment